Hydrodynamical Models of Type II-P Supernova Light Curves

Melina Cecilia Bersten

Universidad de Chile

Type II-P Supernovae

Observation

- Spectroscopy: prominent P-Cygni Balmer lines
- **Photometry**: long plateau phase (L \sim const. for \sim 100 days)
- Spectropolarimetric: explosion approximately spherical

Type II-P Supernovae

Observation

- Spectroscopy: prominent P-Cygni Balmer lines
- **Photometry**: long plateau phase (L \sim const. for \sim 100 days)
- Spectropolarimetric: explosion approximately spherical
- Most common type of SN

Theory

- Core-collapse supernovae
- ▶ Progenitor (M_{ZAMS} : 8 25 M_{\odot}): Red supergiant structure with H-rich envelope
- Compact remnant left after the explosion

Availability of a large database of high quality data of SN II-P from ongoing surveys such as the CSP

Sample of supernovae

- ho \sim 33 nearby SNe II-P: Calán/Tololo, SOIRS and CATS (1986-2003)
- High-quality, well-sampled BVRI light curves and spectra
- The CSP is providing even more objects (\sim 80 SNe II-P)

- Availability of a large database of high quality data of SN II-P from ongoing surveys such as the CSP
- Better knowledge of physical parameters of SN II-P

- Availability of a large database of high quality data of SN II-P from ongoing surveys such as the CSP
- Better knowledge of physical parameters of SN II-P

Determine E_{exp} , M_{ej} , R_0 and M_{Ni} by comparing hydrodynamical models with observations

- Availability of a large database of high quality data of SN II-P from ongoing surveys such as the CSP
- Better knowledge of physical parameters of SN II-P

Determine E_{exp} , M_{ej} , R_0 and M_{Ni} by comparing hydrodynamical models with observations

- (1) Data: bolometric correction --> bolometric light curve (LC) from BVI photometry
- (2) Model: hydrodynamical code → theoretical bolometric LC

(1) Bolometric Correction

$$BC = m_{bol} - [V - A_V]$$
, $rms = 0.11$ mag

Bolometric Luminosity Range

For our SN sample:

- $m{ ilde B}$ Bolometric luminosity from BC vs. B-V
- Origin of time at midpoint between plateau and radioactive tail
- ~1 dex range in plateau luminosity

Plateau Lengths

Plateau durations between 75 and 120 days

(2) Code

- Numerical integration of the hydrodynamic equations + radiative transfer under some assumptions:
 - Spherically symmetric explosion One-dimensional code
 - Diffusion approximation with flux-limited prescription
 - Computation of shock wave using an artificial viscosity term
 - Explosion simulated by a sudden release of energy near the core
 - Energy released by radioactive decay included using gray transfer for gamma-rays
- Double Polytropic as initial model

Before breakout

ullet Model with E=1.3 foes, $R_0=800~R_\odot$, $M_0=19~M_\odot$

Velocity profiles at different times

Theoretical Bolometric LC

 \blacksquare Model with E=1.3 foes, $R_0=800~R_{\odot}$, $M_0=19~M_{\odot}$

After breakout

lacksquare Model with E=1.3 foes, $R_0=800~R_\odot$, $M_0=19~M_\odot$

Profiles of the fraction of ionized Hydrogen

After breakout

 \blacksquare Model with E=1.3 foes, $R_0=800~R_\odot$, $M_0=19~M_\odot$

Temperature profiles

Light curves for different energies

Light curves for different radii

Light curves for different masses

Light curves for different ⁵⁶Ni mass

Model vs. Observation

SN 1999em

Model vs. Observation

SN 1987A

Summary

- We developed a hydrodynamical code to obtain bolometric light curves of SNe II-P which is working satisfactorily
- We obtained model fits for SN 1987A and SN 1999em. The resulting physical parameters are consistent with the literature
- We are currently deriving physical parameters for 33 SNe II-P
- ullet We derived reliable calibrations for BC's applicable to SNe II-P with typical scatter of \sim 0.1 mag
- We calculated bolometric light curves for a sample of 33 SNe II-P
 - 1 dex of differences in plateau luminosities
 - Plateau durations ranged between 75–120 days

Before breakout

 \blacksquare Model with E=1.3 foes, $R_0=800~R_\odot$, $M_0=19~M_\odot$

Density profiles at different times

